Тригонометрические функции числового аргумента. Вступительное слово учителя

Определение1: Числовая функция, заданная формулой y=sin x называется синусом.

Данная кривая имеет название – синусоида.

Свойства функции y=sin x

2. Область значения функции: E(y)=[-1; 1]

3. Четность функции:

y=sin x – нечетная,.

4. Периодичность: sin(x+2πn)=sin x, где n – целое число.

Данная функция через определенный промежуток принимает одинаковые значения. Такое свойство функции называют периодичностью. Промежуток – периодом функции.

Для функции y=sin x период составляет 2π.

Функция y=sin x – периодическая, с периодом Т=2πn, n – целое число.

Наименьший положительный период Т=2π.

Математически это можно записать так: sin(x+2πn)=sin x, где n – целое число.

Определение2: Числовая функция, заданная формулой y=cosx называется косинусом.

Свойства функции y=cos x

1. Область определения функции: D(y)=R

2. Область значения функции: E(y)=[-1;1]

3. Четность функции:

y=cos x –четная.

4. Периодичность: cos(x+2πn)=cos x, где n – целое число.

Функция y=cos x – периодическая, с периодом Т=2π.

Определение 3: Числовая функция, заданная формулой y=tg x, называется тангенсом.


Свойства функции y=tg x

1. Область определения функции: D(y) - все действительные числа, кроме π/2+πk, k – целое число. Потому что в этих точках тангенс не определен.

3. Четность функции:

y=tg x – нечетная.

4. Периодичность: tg(x+πk)=tg x, где k – целое число.

Функция y=tg x – периодическая с периодом π.

Определение 4: Числовая функция, заданная формулой y=ctg x, называется котангенсом.

Свойства функции y=ctg x

1. Область определения функции: D(y) - все действительные числа, кроме πk, k– целое число. Потому что в этих точках котангенс не определен.

2. Область значения функции: E(y)=R.

Основным тригонометрическим тождеством в русскоязычных учебниках математики называют соотношение sin 2 ⁡ α + cos 2 ⁡ α = 1

Мы рассмотрели самые основные тригонометрические функции (не обольщайтесь помимо синуса, косинуса, тангенса и котангенса существует еще целое множество других функций, но о них позже), а пока рассмотрим некоторые основные свойства уже изученных функций.

Тригонометрические функции числового аргумента

Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число sin(t) . Правда, правило соответствия довольно сложное и заключается в следующем.

Чтобы по числу t найти значение sin(t) , нужно:

  1. расположить числовую окружность на координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0);
  2. на окружности найти точку, соответствующую числу t ;
  3. найти ординату этой точки.
  4. эта ордината и есть искомое sin(t) .

Фактически речь идет о функции s = sin(t) , где t - любое действительное число. Мы умеем вычислять некоторые значения этой функции (например, sin(0) = 0 , \(sin \frac {\pi}{6} = \frac{1}{2} \) и т.д.), знаем некоторые ее свойства.

Точно так же мы можем считать, что уже получили некоторые представления еще о трех функциях: s = cos(t) s = tg(t) s = ctg(t) Все эти функции называют тригонометрическими функциями числового аргумента t .

Связь тригонометрических функций

Как вы, надеюсь, догадываетесь все тригонометрические функции связаны между собой и даже не зная значение одной, ее можно найти через другое.

К примеру, самая главная формула, из всей тригонометрии - это основное тригонометрическое тождество :

\[ sin^{2} t + cos^{2} t = 1 \]

Как видите, зная значение синуса можно найти значение косинуса, и также наоборот. Также очень распространенные формулы, связывающие синус и косинус с тангенсом и котангенсом:

\[ \boxed {\tan\; t=\frac{\sin\; t}{\cos\; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {\cot\; t=\frac{\cos\; }{\sin\; }, \qquad t \neq \pi k} \]

Из двух последних формул можно вывести еще одно тригометрическое тождество, связывающее на этот раз тангенс и котангенс:

\[ \boxed {\tan \; t \cdot \cot \; t = 1, \qquad t \neq \frac{\pi k}{2}} \]

Теперь давайте посмотрим, как эти формулы действуют на практике.

ПРИМЕР 1. Упростить выражение: а) \(1+ \tan^2 \; t \), б) \(1+ \cot^2 \; t \)

а) В первую очередь распишем тангенс, сохраняя квадрат:

\[ 1+ \tan^2 \; t = 1 + \frac{\sin^2 \; t}{\cos^2 \; t} \]

\[ 1 + \frac{\sin^2 \; t}{\cos^2 \; t}= \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} \]

Теперь введем все под общий знаменатель, и получаем:

\[ \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} = \frac{\cos^2 \; t + \sin^2 \; t}{\cos^2 \; t} \]

Ну и наконец, как мы видим числитель можно по основному тригонометрическому тождеству сократить до единицы, в итоге получаем: \[ 1+ \tan^2 \; = \frac{1}{\cos^2 \; t} \]

б) С котангенсом выполняем все те же самые действия, только в знаменателе будет уже не косинус, а синус и ответ получится таким:

\[ 1+ \cot^2 \; = \frac{1}{\sin^2 \; t} \]

Выполнив данное задание мы вывели еще две очень важные формулы, связывающие наши функции, которые тоже нужно знать, как свои пять пальцев:

\[ \boxed {1+ \tan^2 \; = \frac{1}{\cos^2 \; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {1+ \cot^2 \; = \frac{1}{\sin^2 \; t}, \qquad t \neq \pi k} \]

Все представленные в рамках формулы вы должны знать наизусть, иначе дальнейшее изучение тригонометрии без них просто невозможно. В дальнейшем будут еще формулы и их будет очень много и уверяю все их вы точно будете запоминать долго, а может и не запомните, но эти шесть штук должны знать ВСЕ!

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
В настоящей главе мы введем тригонометрические функции числового аргумента. Многие вопросы математики, механики, физики и других наук приводят к тригонометрическим функциям не только угла (дуги), но и аргументов совершенно различной природы (длина, время, температура и т. д.). До сих пор под аргументом тригонометрической функции понимался угол, измеренный в градусах или радианах. Теперь мы обобщим понятия синуса, косинуса, тангенса, котангенса, секанса и косеканса, введя их как функции числового аргумента.

Определение. Тригонометрическими функциями числового аргумента называются одноименные тригонометрические функции угла, равного радианам.

Поясним это определение на конкретных примерах.

Пример 1. Вычислим значенйе . Здесь под мы понимаем отвлеченное иррациональное число. Согласно определению . Итак, .

Пример 2. Вычислим значение . Здесь под 1,5 мы понимаем отвлеченное число. Согласно определению (см. приложение II).

Пример 3. Вычислим значение Аналогично предыдущему получаем (см. приложение II).

Итак, в дальнейшем под аргументом тригонометрических функций мы будем понимать угол (дугу) или просто число в зависимости от той задачи, которую решаем. А в ряде случаев аргументом может служить величина, имеющая и другую размерность, например время и т. д. Называя аргумент углом (дугой), мы можем подразумевать под ним число, с помощью которого он измерен в радианах.

Урок и презентация на тему: "Тригонометрическая функция числового аргумента, определение, тождества"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Определение числового аргумента.
2. Основные формулы.
3. Тригонометрические тождества.
4. Примеры и задачи для самостоятельного решения.

Определение тригонометрической функции числового аргумента

Ребята, мы знаем что такое синус, косинус, тангенс и котангенс.
Давайте посмотрим, можно ли через значения одних тригонометрических функций найти значения других тригонометрических функций?
Определим тригонометрическую функцию числового элемента, как: $y= sin(t)$, $y= cos(t)$, $y= tg(t)$, $y= ctg(t)$.

Вспомним основные формулы:
$sin^2(t)+cos^2(t)=1$. Кстати, как называется эта формула?

$tg(t)=\frac{sin(t)}{cos(t)}$, при $t≠\frac{π}{2}+πk$.
$ctg(t)=\frac{cos(t)}{sin(t)}$, при $t≠πk$.

Давайте выведем новые формулы.

Тригонометрические тождества

Мы знаем основное тригонометрическое тождество: $sin^2(t)+cos^2(t)=1$.
Ребята, давайте обе части тождества разделим на $cos^2(t)$.
Получим: $\frac{sin^2(t)}{cos^2(t)}+\frac{cos^2(t)}{cos^2(t)}=\frac{1}{cos^2(t)}$.
Преобразуем: $(\frac{sin(t)}{cos(t)})^2+1=\frac{1}{cos^2(t)}.$
У нас получается тождество: $tg^2(t)+1=\frac{1}{cos^2(t)}$, при $t≠\frac{π}{2}+πk$.

Теперь разделим обе части тождества на $sin^2(t)$.
Получим: $\frac{sin^2(t)}{sin^2(t)}+\frac{cos^2(t)}{sin^2(t)}=\frac{1}{sin^2(t)}$.
Преобразуем: $1+(\frac{cos(t)}{sin(t)})^2=\frac{1}{sin^2(t)}.$
У нас получается новое тождество, которое стоит запомнить:
$ctg^2(t)+1=\frac{1}{sin^2(t)}$, при $t≠πk$.

Нам удалось получить две новых формулы. Запомните их.
Эти формулы используются, если по какому-то известному значению тригонометрической функции требуется вычислить значение другой функции.

Решение примеров на тригонометрические функции числового аргумента

Пример 1.

$cos(t) =\frac{5}{7}$, найти $sin(t)$; $tg(t)$; $ctg(t)$ для всех t.

Решение:

$sin^2(t)+cos^2(t)=1$.
Тогда $sin^2(t)=1-cos^2(t)$.
$sin^2(t)=1-(\frac{5}{7})^2=1-\frac{25}{49}=\frac{49-25}{49}=\frac{24}{49}$.
$sin(t)=±\frac{\sqrt{24}}{7}=±\frac{2\sqrt{6}}{7}$.
$tg(t)=±\sqrt{\frac{1}{cos^2(t)}-1}=±\sqrt{\frac{1}{\frac{25}{49}}-1}=±\sqrt{\frac{49}{25}-1}=±\sqrt{\frac{24}{25}}=±\frac{\sqrt{24}}{5}$.
$ctg(t)=±\sqrt{\frac{1}{sin^2(t)}-1}=±\sqrt{\frac{1}{\frac{24}{49}}-1}=±\sqrt{\frac{49}{24}-1}=±\sqrt{\frac{25}{24}}=±\frac{5}{\sqrt{24}}$.

Пример 2.

$tg(t) = \frac{5}{12}$, найти $sin(t)$; $cos(t)$; $ctg(t)$, при всех $0

Решение:
$tg^2(t)+1=\frac{1}{cos^2(t)}$.
Тогда $\frac{1}{cos^2(t)}=1+\frac{25}{144}=\frac{169}{144}$.
Получаем, что $cos^2(t)=\frac{144}{169}$.
Тогда $cos^2(t)=±\frac{12}{13}$, но $0 Косинус в первой четверти положительный. Тогда $cos(t)=\frac{12}{13}$.
Получаем: $sin(t)=tg(t)*cos(t)=\frac{5}{12}*\frac{12}{13}=\frac{5}{13}$.
$ctg(t)=\frac{1}{tg(t)}=\frac{12}{5}$.

Задачи для самостоятельного решения

1. $tg(t) = -\frac{3}{4}$, найти $sin(t)$; $cos(t)$; $ctg(t)$, при всех $\frac{π}{2} 2. $сtg(t) =\frac{3}{4}$, найти $sin(t)$; $cos(t)$; $tg(t)$, при всех $π 3. $sin(t) = \frac{5}{7}$, найти $cos(t)$; $tg(t)$; $ctg(t)$ для всех $t$.
4. $cos(t) = \frac{12}{13}$, найти $sin(t)$; $tg(t)$; $ctg(t)$ для всех $t$.
Понравилась статья? Поделитесь с друзьями!